๐ง ๐๐ ๐๐ฉ๐ฉ๐ฌ ๐๐๐ข๐ฅ ๐๐๐๐๐ฎ๐ฌ๐ ๐ญ๐ก๐ ๐ฆ๐๐ฆ๐จ๐ซ๐ฒ ๐ข๐ฌ ๐๐๐

๐ง ๐๐ ๐๐ฉ๐ฉ๐ฌ ๐๐จ๐งโ๐ญ ๐๐๐ข๐ฅ ๐๐๐๐๐ฎ๐ฌ๐ ๐ญ๐ก๐ ๐ฆ๐จ๐๐๐ฅ ๐ข๐ฌ ๐๐๐.
๐๐ก๐๐ฒ ๐๐๐ข๐ฅ ๐๐๐๐๐ฎ๐ฌ๐ ๐ญ๐ก๐ ๐ฆ๐๐ฆ๐จ๐ซ๐ฒ ๐ข๐ฌ.
As more teams ship AI assistants, one quiet problem keeps showing up:
โก๏ธ ๐๐จ๐ง๐ฏ๐๐ซ๐ฌ๐๐ญ๐ข๐จ๐ง๐ฌ ๐ ๐๐ญ ๐ฅ๐จ๐ง๐ ๐๐ซ
โก๏ธ ๐๐จ๐ง๐ญ๐๐ฑ๐ญ ๐ค๐๐๐ฉ๐ฌ ๐ ๐๐ญ๐ญ๐ข๐ง๐ ๐ซ๐-๐ฌ๐๐ง๐ญ
โก๏ธ ๐๐จ๐ฌ๐ญ๐ฌ ๐๐ฑ๐ฉ๐ฅ๐จ๐๐ โ ๐๐ง๐ ๐ช๐ฎ๐๐ฅ๐ข๐ญ๐ฒ ๐๐ซ๐จ๐ฉ๐ฌ
Above we've together the comparison below to show how the main โmemoryโ approaches stack up โ and when each one actually makes sense.
What stood out:
๐น ๐๐จ๐ฌ๐ญ ๐ญ๐จ๐จ๐ฅ๐ฌ ๐ฃ๐ฎ๐ฌ๐ญ ๐ฌ๐ญ๐จ๐ซ๐ ๐ฆ๐๐ฌ๐ฌ๐๐ ๐๐ฌ
๐น ๐
๐๐ฐ ๐ฌ๐ฒ๐ฌ๐ญ๐๐ฆ๐ฌ ๐ฆ๐๐ง๐๐ ๐ ๐ฐ๐ก๐๐ญ ๐ฆ๐๐ญ๐ญ๐๐ซ๐ฌ ๐ข๐ง๐ฌ๐ข๐๐ ๐ญ๐ก๐๐ฆ โ facts, preferences, user state, continuity, and cost control.
Thatโs the gap @Mnexium AI focuses on:
๐ ๐ ๐ฉ๐๐ซ๐ฌ๐ข๐ฌ๐ญ๐๐ง๐ญ, ๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐๐ ๐ฆ๐๐ฆ๐จ๐ซ๐ฒ ๐ฅ๐๐ฒ๐๐ซ that follows the user across sessions and even across models โ without bolting together vector DBs, pipelines, and manual logic.
Iโd love to hear from people building AI products:
๐ ๐๐ก๐ข๐๐ก ๐ฆ๐๐ฆ๐จ๐ซ๐ฒ ๐๐ฉ๐ฉ๐ซ๐จ๐๐๐ก ๐๐ซ๐ ๐ฒ๐จ๐ฎ ๐ฎ๐ฌ๐ข๐ง๐ ๐ญ๐จ๐๐๐ฒ?
๐ ๐๐ก๐๐ญโ๐ฌ ๐๐๐๐ง ๐ก๐๐ซ๐๐๐ฌ๐ญ โ cost, complexity, or reliability?



Replies